Evaluation of Variation Geometry of Urban Texture on Outdoor Thermal Comfort Conditions Case Study: Old and Middle Residential Fabric of Shiraz City

Document Type : Research Article

Authors

1 Assistant Professor of Urban Design, Shiraz University, Shiraz, Iran

2 M.A. student of Urban Design, Shiraz University, Shiraz, Iran

10.22034/jsc.2021.244281.1296

Abstract

Extended abstract
Introduction
Improving people's thermal comfort in outdoor spaces is one of the most important goals of achieving the desirable design in these spaces. Today, the issue of thermal comfort in the " manufactured environment" is considered as a vital factor that affects health and the level of mental comfort of urban residents. Special attention to the issue of thermal comfort of people in outdoor spaces is of fundamental importance due to its direct impact on cognitive function and efficiency and as an important principle, it should be considered in the process of designing open urban spaces. Because comfortable outdoor spaces within urban fabrics can provide opportunities for people to participate and increase their social participation. Residential textures, as the core of urban areas, require high energy to meet the cooling and comfort needs of their residents. Also, this challenge stems from the undesirable design of these textures in modern times. It is essential to control "local micro- climate" in order to achieve the thermal comfort of the residents. The aim of this study was to investigate the micro-climate conditions of old and middle textures of Shiraz city on a summer day with extreme heat stress, so that during the hottest hour of the day, the correlation between the geometry of old and middle textures with comfort index Thermal "PMV" was measured and the thermal comfort conditions in the old and middle textures were studied.
 
Methodology
In order to conduct the present research, descriptive-analytical research method has been used in the context of library studies and quantitative measurement using two software ENVI-met 4 basic and SPSS. The most important advantage of this software is that it is one of the first models that seeks to produce the main processes in the atmosphere and calculates all the important meteorological factors. "Envi-met" software has been used in various studies, but in this study, the research method of those studies that have provided a basis for conducting our research has been studied. The aim of this research is to measure the thermal comfort on a hot summer day with the maximum air temperature in different climates, all studies have been done using " Envi-met " software and have been mainly based on "simulation". In this study, a simulation for the date of 21 July in the "thirty-year period" was performed. For this purpose, the weather data entered into the " Envi-met " software based on the 30-year weather data taken from the official sites of Shiraz city and using Autodesk Ecotect software for an average of 30 years, 21 July has been taken to simulate the hourly output that has been entered into the " Envi-met " software for date of "21 July ". The "PMV" thermal comfort index for the selected areas located in the old and middle textures was extracted between 9 am and 16 pm and specifically at 15 pm with maximum temperature. Then, using "SPSS" statistical software to analyze the correlation between air temperature variables (° C), wind speed (m/s), relative humidity (%), Mean radiant temperature (° C) and urban geometry parameter "Sky view factor" with the "PMV" thermal comfort index at 15:00 pm in each of the "old and middle" textures.
 
Results and discussion
According to statistical analyzes and results obtained in both textures, it was found that in the middle texture, the correlation rate of "PMV" thermal comfort index with the variables of "Sky view factor" coefficient (0.885) and" Mean radiant temperature" (0.689) and in the old texture has a strong and positive correlation between "PMV" thermal comfort index and "wind speed" (0.935) and "Sky view factor" (0.762). It can be said that "Sky view factor" coefficient as one of the components of urban texture geometry in both textures, has a very positive and direct correlation with "PMV" thermal comfort index. Also, according to the obtained outputs related to the thermal comfort index "PMV", in the old and middle texture and according to the 7-degree ASHRAE standard (ASHRAE Standard 55,2004: 2) related to the "PMV" index was determined. The old texture feels less heat stress than the middle texture between 9 a.m. and 16 p.m., and especially at 15 p.m. And it is in the range of more thermal comfort, which is due to the special geometric features of the old texture, such as the street orientation, aspect ratio and sky view factor compared to the middle texture.
 
Conclusion
According to the results obtained related to the thermal comfort index "PMV", the selected points in both old and middle textures were determined that the old texture studied in time intervals and according to the Ashri standard, is in the range of low and medium heat stress and has more thermal comfort than the middle texture. Thus, the old and middle textures with their specific spatial layout, absorb different amounts of solar energy during the day and as a result, different levels of thermal comforts are created that organic urban layouts, such as old texture with higher levels of shading, are more efficient during the summer and provide more thermal comfort.

Keywords


  1. بهرامی نژاد، دهقان (1383) شناخت و ارزیابی کیفیت محیط شهری در بافت میانی شهرها (مطالعه موردی: بافت میانی شهر شیراز)، کارشناسی ارشد شهرسازی، دانشکده هنر و معماری، دانشگاه شیراز.
  2. ثناگر دربانی، الهام؛ رفیعیان، مجتبی؛ حنایی، تکتم؛ منصفی پراپری، دانیال (1397) ارزیابی اثرات تغییرات اقلیمی بر تغییرات آسایش حرارتی بیرونی با استفاده از شاخص دمای معادل فیزیولوژیکی (PET) در شهر مشهد، تحقیقات جغرافیایی، دوره33، شماره 3،  صص. 57-39.
  3.  ذاکر حقیقی، کیانوش؛ ماجدی، حمید؛ حبیب، فرح (1388) تدوین شاخص‌های مؤثر بر گونه شناسی بافت شهری. نشریه هویت شهر، سال 4، شماره 7، صص.112-105.
  4. ذکاوت، کامران (1392) جایگاه سازمان کالبدی در طراحی شهری، نشریه صفه، شماره 60، صص. 90-65.
  5. شمسی‌پور، علی‌اکبر؛ یاراحمدی، داریوش؛ سلمانیان فرزاد (1394) کاربرد اصول دانش طراحی اقلیمی در طراحی فضاهای شهری با تأکید بر آسایش حرارتی – تحقق طراحی و نتایج از پروژه سهیل، پژوهش‌های جغرافیای طبیعی، دوره 47، شماره 1، صص.159-143.
  6. صفایی پور، مسعود؛ شبانکاری، مهران؛ تقوی، طیبه (1392) شاخص‌های زیست‌اقلیمی مؤثر بر ارزیابی آسایش انسان (مطالعه موردی: شهر شیراز)، جغرافیا و برنامه‌ریزی محیطی، سال 24، شماره 50، صص.210-193.
  7. کرمی­راد، سینا؛ علی‌آبادی، محمد؛ حبیبی، امین (1397) سنجش تأثیر هندسه شهری بر شرایط آسایش حرارتی بیرونی در مقیاس خرد اقلیم؛ (مورد پژوهی: فضای باز مجتمع مسکونی گلدشت شیراز)، مجله برنامه‌ریزی منطقه‌ای، دوره 8، شماره 29، صص 161-172.
  8. مرتضایی، گلناز؛ محمدی، محمود؛ نصراللهی، فرشاد؛ قلعه‌نویی، محمود (1396) بررسی ریخت-گونه شناسانه بافت‌های مسکونی جدید در راستای بهینه‌سازی مصرف انرژی اولیه (مطالعه موردی: سپاهان شهر)، فصلنامه مطالعات شهری، سال 6، شماره 24، صص.54-41.
  9. منتظری، مرجان؛ جهانشاه لو، لعلا؛ ماجدی؛ حمید (1397) تأثیر مؤلفه‌های فرم کالبدی شهری بر آسایش حرارتی فضاهای باز شهری، (مطالعه موردی، اراضی پشت سیلو، شهر یزد)، مطالعات محیطی هفت حصار، سال 6، شماره 22، صص. 84-63.
  10. Araldi, Alessandro. & Fusco, Giovanni. (2019) From the street to the metropolitan region: Pedestrian perspective in urban fabric analysis: Environment and Planning B, Urban Analytics and City Science, Vol.46, No.7, pp.1243–1263.
  11. (2004) ASHRAE standard 55-2004, thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta, pp.1-30.
  12. Azhdari, Abolghasem. & Soltani, Ali. & Alidadi, Mehdi. (2018) Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city, Sustainable Cities and Society, Vol.41, pp.853-864.
  13. Ali-Toudert, Fazia. & Mayer, Helmut. (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate, Building and Environment, Vol.41, No.2, pp. 94-108.
  14. Ahmadi Venhari, Armaghan. & Tenpierik, Martin. & Taleghani, Mohammad. (2019) The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate, Journal of Arid Environments, Vol.166, pp.68-76
  15. Abreu-Harbich, Loyde V. & Labaki, Lucila C. & Matzarakis, Andreas. (2013) Thermal bioclimate in idealized urban street canyons in Campinas, Brazil, Theoretical and Applied Climatology, Vol.115, No.1, pp. 333-340.
  16. Barakat, Asmaa. & Ayad, Hany. & El-Sayed, Zeyad. (2017) Urban design in favor of human thermal comfort for hot arid climate using advanced simulation methods, Alexandria Engineering, Vol.56, No.4, pp.533-543.
  17. Biqaraz, Behrooz. & Fayaz, Rima. & Haghighaat Naeeni, Gholamreza. (2019) A comparison of outdoor thermal comfort in historical and contemporary urban fabrics of Lar City, Hournal of Urban Climate, Vol.27, pp.212–226.
  18. Berkovic, Sigalit.& Yezioro, Abraham. & Bitan, Arieh. (2012) Study of thermal comfort in courtyards in a hot arid climate, Solar Energy, Vol.86, No.5, pp.1173-1186.
  19. Bourbia, Fatiha. & Awbi, H.B (2004) Building cluster and shading in urban canyon for hot dry climate: part 2: shading simulations, Renew Energy, Vol.29, pp.291–301.
  20. Bourbia, Fatiha. & Boucheriba, Fouzia. (2010) Impact of street design on urban microclimate for semi arid climate (Constantine), Renewable Energy, Vol.35, No.2, pp. 343-347.
  21. Chatzipoulka, Christina. & Compagnon, Raphaël. & Nikolopoulou, Marialena. (2017) Urban geometry and solar availability on fa ades and ground of real urban forms: using London as a case study, Jornal of Solar Energy, Vol.138, pp.53-66
  22. Conzen, Michael. & Robert, Günter. (1960) Alnwick: A Study in Town Plan Analysis, Transactions, Institute of British Geographers, Vol.27, pp. 1-12
  23. Carfan, Ana Claudia. & Galvani, Emerson. & Teixeira Nery, Jonas. (2010) Study of thermal comfort in the City of São Paulo using ENVI-met model, Investigaciones Geográficas (Mx), Vol.78, pp.34-47
  24. Correa, Erica. & Ruiz, María Angélica. & Canton, Alicia. & Lesino, Graciela. (2012) Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina, Build Environment, Vol.58, pp.219–230.
  25. Charalampopoulos, Ioannis. & Tsiros, Ioannis. & Chronopoulou-Sereli, Aikaterini. & Matzarakis, Andreas. (2013) Analysis of thermal bioclimate in various urban configurations in Athens, Greece, Urban Ecosyst, Vol.16, pp.217–233.
  26. Chatzidimitriou, Angeliki. & Yannas, Simos. (2016) Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer, Sustainable Cities and Society, Vol.26, pp.27-47
  27. de Dear, Richard. & Kim, Jungsoo. (2016) Thermal Comfort Inside and Outside Buildings, Advanced Environmental Wind Engineering, Springer Japan.
  28. Dempsey, Nicola. & Brown, Caroline. & Raman, Shibu. & Porta, Sergio. & Jenks, Mike. Jones, Colin. & Bramley, Glen. (2008) Elements of Urban Form, Future City: Springer Netherlands.
  29. Díaz-Negrillo, Ana. & Hernández, Salvador Valera. (2008) Geert Booij, The grammar of words: An introduction to linguistic morphology, 2nd edition (Oxford Textbooks in Linguistics). Oxford: Oxford University Press, 2007. xiv + 345 pp, English Language and Linguistics, Vol.12, No.1, pp.187-193
  30. Emmanuel, R. & Johansson, Erik. (2006) Influence of urban morphology and sea breeze on hot humid microclimate: the case of Colombo, Sri Lanka, Climate Research, Vol.30, pp. 189-200.
  31. Elnahas, Mohamed. (2003) The effects of urban configuration on urban air temperatures, Architectural Science Review, Vol.46, pp.135–138.
  32. Fabbri, Kristian. & Di Nunzio, Antonello. & Gaspari, Jacopo. & Antonini, Ernesto. & Boeri, Andrea. (2017) Outdoor Comfort: The ENVI-BUG tool to Evaluate PMV Values Output Comfort Point by Point, Energy Procedia, Vol.111, pp.510-519.
  33. Fang, Zhaosong. & Feng, Xiwen. & Lin, Zhang. (2017) Investigation of PMV Model for Evaluation of the Outdoor Thermal Comfort, Procedia Engineering, Vol.205, pp.2457-2462.
  34. Grifoni, Roberta Cocci. & Passerini, Giorgio. & Pierantozzi, Mariano. (2013) Assessment of outdoor thermal comfort and its relation to urban geometry. Sustainable Development and Planning VI, WIT Press, Vol.172, pp.1-14
  35. Georgakis, C. & Santamouris, Mat. (2006) Experimental investigation of air flow and temperature distribution in deep urban canyons for natural ventilation purposes, Energy Build, Vol.38, pp.367–376.
  36. Haupt, Per. & Berghauser, Meta. (2002) Spacemate: the Spatial Logic of Urban Density, Delft University Press: The Netherlands.
  37. Johansson, Erik. & Spangenberg, Jörg. & Gouvêa, Mariana Lino. & Freitas, Edmilson D. (2013) Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil, Urban Climate, Vol.6, pp. 24-43.
  38. Johansson, Erik. (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco, Building and Environment, Vol.41, No.10, pp. 1326-1338.
  39. Jihad, Alaoui Sosse. & Tahiri, Mohamed. (2016) Modeling the urban geometry influence on outdoor thermal comfort in the case of Moroccan microclimate, Urban Climate, Vol.16, pp.25-42.
  40. Kropf, Karl S. (1998) Typological Zoning, in Petruccioli, Attilio (1998) Rethinking XIXTh Century cities, Proceedings of the international symposium sponsored by the Aga Khan Program for Islamic Architecture at Harvard University and the Massachusetts Institute of Technology.
  41. Krüger, Eduardo. & Pearlmutter, David. & Rasia, F. (2010) Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment, Applied Energy, Vol.87, pp.2068–2078.
  42. Lin, Tzu-Ping. & Matzarakis, Andreas. & Hwang, Ruey-Lung. (2010) Shading effect on long-term outdoor thermal comfort, Building and Environment, Vol.45, No.1, pp.213-221
  43. Matzarakis, Andreas. & Rutz, Frank. & Mayer, Helmut. (2007) Modelling radiation fluxes in simple and complex environments-application of the RayMan model, International Journal of Biometeorology, Vol.51, No.4, pp.323-334.
  44. Monteiro, Leonardo Marques. & Alucci, Marcia Peinado. (2009) Thermal comfort index for the assessment of outdoor urban spaces in subtropical climates; The seventh International Conference on Urban Climate, Yokohama, Japan.
  45. Moudon, Anne Vernez. (1994) Getting to know the built landscape: Typomorphology.In Ordering Space: Types in architecture and design. Franck, Karen A.; Schneekloth, Lynda H. (eds.). New York,Van Nostrand Reinhold.
  46. Nazarian, Negin. & Acero, Juan A. & Norford, Leslie. (2019) Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design, Building and Environment, Vol.155, pp.145-160.
  47. Nikolopoulou, Marialena. & Baker, Nick. & Steemers, Koen. (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter, Solar Energy, Vol.70, pp.227–235.
  48. Nikolopoulou, Marialena. & Lykoudis, Spyros. (2007) Use of outdoor spaces and microclimate in a Mediterranean urban area, Building and Environment, Vol.42, No.10, pp.3691-3707.
  49. Oke, T.R. (1988) Street design and urban canopy layer climate, Energy and Buildings, No.1, pp.103–113.
  50. Peng, You. & Feng, Tao. & Timmermansa, Harry. (2019) A path analysis of outdoor comfort in urban public spaces, Building and Environment, Vol.148, pp.459-467.
  51. Perini, Katia. & Magliocco, Adriano. (2014) Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort, Urban For Urban Green, Vol.13, pp.495–506.
  52. Paramita, Beta. & Fukuda, Hiroatsu. (2013) Study on the Affect of Aspect Building Form and Layout Case Study: Honjo Nishi Danchi, Yahatanishi, Kitakyushu-Fukuoka, Procedia Environmental Sciences, Vol.17, pp.767-774.
  53. Radberg Johan. (1996) Towards a Theory of Sustainability and Urban Quality: A New Method for Typological Urban Classification, in Gray M., (ed.), Evolving Environmental Ideals: Changing Ways of Life, Values and Design Practice, Book of Proceedings for the 14th Conference of the International Association for People- Environment Studies, Stockholm, pp.384-392.
  54. Suryawinata, Bonny. & Mariana, Yosica. & Wijaksono, Sigit. (2018) Sustainability and urban morphology. IOP Conference Series: Earth and Environmental Science, Vol.195, No.1, pp.1-6.
  55. Sandberg, Mats. & Westerberg, Ulla. & Claesson, Leif. (2003) Catchment area-a new approach to urban windiness, In: Proceedings of the Fifth International Conference on Urban Climate, pp. 1–5.
  56. Tong, Shanshan. & Wong, Nyuk Hien. & Tan, Chun Liang. & Jusuf, Steve Kardinal. & Ignatius, Marcel. & Tan, Erna. (2017).= Impact of urban morphology on microclimate and thermal comfort in northern China, Solar Energy, Vol.155, pp.212-223.
  57. Trache, Hichem. (2001) Promoting Urban Design in Development Plans: Typo-morphological Approaches in Montreuil, France, Urban Design International, Vol.6; pp.157-172.
  58. Thorsson, Sofia. & Lindberg, Fredrik. & Björklund, Jesper. & Holmer, Björn. & Rayner, David. (2010) Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry, International Journal of Climatology, Vol.31, No.2, pp.324-335
  59. Ali-Toudert, Fazia. (2005) Dependence of outdoor thermal comfort on street design in hot and dry climate, Germany: Universitätsbibliothek Freiburg.
  60. Taleghani, Mohammad. & Kleerekoper, Laura. & Tenpierik, Martin. & van den Dobbelsteen, Andy. (2015) Outdoor thermal comfort within five different urban forms in the Netherlands, Building and Environment, Vol.83, pp.65-78.
  61. Taleb, Hanan. & Taleb, Dana. (2014) Enhancing the thermal comfort on urban level in a desert area: case study of Dubai, Urban for Urban Green, Vol.13, pp.253–60.
  62. Watkins, Richard. & Palmer, John. & Kolokotroni, Maria. (2007) Increased temperature and intensification of the urban heat island: implications for human comfort and urban design, Built Environment, Vol.33, No.1, pp.85–96.
  63. Wheeler, Stephen M. (2004) Planning for Sustainability. Simultaneously published in the USA and Canada by Routledge, This edition published in the Taylor & Francis e-Library.
  64. Yahia, Moohammed Wasim. & Johansson, Erik. & Thorsson, Sofia. & Lindberg, Fredrik. & Rasmussen, Maria Isabel. (2018) Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania, International Journal of Biometeorology, Vol.62, No.3, pp.373-385.
  65. Yang, Yujun. & Zhou, Dian. & Wang, Yupeng. & Ma, Dixuan. & Chen, Wei. & Xu, Duo. & Zhu, ZongZhou. (2019) Economical and outdoor thermal comfort analysis of greening in multistory residential areas in Xi’an, Sustainable Cities and Society, Vol.51, pp.1-13
  66. Younsi, Safa Achour. & Kharrat, Fakher. (2015) Outdoor Thermal Comfort: Impact of the Geometry of an Urban Street Canyon in a Mediterranean Subtropical Climate–Case Study Tunis, Tunisia, Procedia-Social and Behavioral Sciences, Vol.216, pp.689-700.
  67. Yang, Feng. & Qian, Feng. & Lau, Stephen S.Y. (2013) Urban form and density as indicators for summertime outdoor ventilation potential: a case study on high-rise housing in Shanghai, Building and Environment, Vol.70, pp.122–137.
  68. Yan, Hai. & Fan, Shuxin. & Guo, Chenxiao. & Wu, Fan. & Zhang, Nan. & Dong, Li. (2014) Assessing the effects of landscape design parameters on intra-urban air temperature variability: the case of Beijing, China, Build Environment, Vol.76, pp.44–53.
  69. Yuan, Chao. & Chen, Liang. (2011) Mitigating urban heat island effects in high-density citiesbased on sky view factor and urban morphological understanding: a study of Hong Kong, Architectural Science Review, Vol.54, pp.305–315.
  70. Zakhour, Suhil. (2015) The Impact of Urban Geometry on Outdoor Thermal Comfort Conditions in Hot-arid Region, Civil Engineering and Architecture Research, Vol.2, No.8, pp.862-875.
  71. Zhang, Yufeng. & Du, Xiaohan. & Shi, Yurong. (2017) Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China, International Journal of Biometeorology, Vol.61, No.8, pp.1421-1432.
  72. Zhou, Bin. & Rybski, Diego. & Kropp, Jürgen. (2017) The role of city size and urban form in the surface urban heat island, Scientific Reports, Vol.7, No.1, pp.1-12.
  73. Zabeti Targhi, Milad. & Van Dessel, Steven. (2015) Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA, Procedia Engineering, Vol.118, p.1153-1161
  74. ir, https://www.ladybug.tools/epwmap, https://energyplus.net/weather
  75. Bahrami-nejad, Dehghan. (2004) Survey and Assessment of The Urban Environment Quality in The Inner City: Case study: Shiraz. (Segment of The District Developed Between 1921-1941). (Unpublished master's dissertation). Shiraz University, shiraz, MA. [in Persian].
  76. Karamirad, Sina. & Aliabadi, Mohammad. & Habibi, Amin. (2018) Assessing the Impact of Urban Geometry on Outdoor Thermal Comfort in Microclimate Scale: A Case Study of the Open Space of Goldasht Residential Complex in Shiraz, Journal of Regional Planning, Vol.8, No.29, pp.161-172. [in Persian].
  77. Montazeri, Marjan. & Jahanshahloo, Lala. & majedi, Hamid. (2017) Effect Components of Urban Physical Form on Outdoor Thermal Comfort: Case study: Yazd. Haft Hesar, Journal of Environmental Studies, Vol.6, No.22, pp.63-84. [in Persian].
  78. Mortezaei, Golnaz. & Mohammadi, Mahmoud. & Nasrollahi, Farshad. & Ghalehnoee, Mahmoud. (2017) Typo-Morphological Evaluation of New Residential Urban Texture in Order to Optimize Primary Energy Consumption: Case Study: Sepahanshahr, Motaleate shahri, Vol.6, No.24, pp.41-54. [in Persian].
  79. Safaeipoor,Masoud. & Shabankari, Mehran. & Taghavi, Tayyaba. (2013) The Effective Bioclimatic Indices on evaluating Human Comfort: Case study: Shiraz City, Geography and Environmental Planning, Vol.50 , No.2, pp.193-210. [in Persian].
  80. Sanagar Darbani, & Rafieian, Mojtaba. & Hanaee, Toktam. & Monsefi Parapari, Danial. (2018) Climate Change Impact Assessment on Outdoor Thermal Comfort Changes Using Physiological Equivalent Temperature (PET) Index in Mashhad, Geographical Researches Journal, Vol.33, No.3, pp.38-57. [in Persian].
  81. Shamsipour, AliAkbar. & Yarahmadi, Dariush. & Salmanian, Farzad. (2015) The Use of Climate Desing Knowledge in Urban Spaces Design Emphasizing on Thermal Comfort -Design Realization and Results of Soheil Project, Physical Geography Research, Vol.47, No.1, pp.143-159. [in Persian].
  82. Zakerhaghighi, Kianoosh. & Majedi, Hamid. & Habibi, Farah. (2011) Identifying Effective Indicators for Typology Urban Fabrics. Hoviatshahr, Vol.4, No.7, pp.105-112. [in Persian].
  83. Zekavat, Kamran. (2013) Physical organization in urban design, Soffeh, Vol.23, No.60, pp.65-90. [in Persian].